Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Bis(4-pyridylmethyl)piperazin-1-ium perchlorate fumaric acid hemisolvate

Gregory A. Farnum and Robert L. LaDuca*

Lyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA Correspondence e-mail: laduca@msu.edu

Received 29 June 2009; accepted 4 July 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.092; data-to-parameter ratio = 13.4.

In the title salt, $C_{16}H_{21}N_4^+ \cdot ClO_4^- \cdot 0.5C_4H_4O_4$, fumaric acid molecules, situated across crystallographic inversion centres, are $O-H \cdot \cdot \cdot N$ hydrogen bonded to two protonated 1,4-bis(4pyridylmethyl)piperazine cations, forming trimolecular units. These construct one-dimensional supramolecular ribbons by $N-H \cdot \cdot \cdot N$ hydrogen bonding, and further aggregate *via* $\pi - \pi$ interactions [shortest $C \cdot \cdot \cdot C$ contact = 3.640 (1) Å] and perchlorate-mediated $C-H \cdot \cdot \cdot O$ interactions.

Related literature

For the preparation of bis(4-pyridylmethyl)piperazine, see: Pocic *et al.* (2005). For a cadmium fumarate coordination polymer containing bis(4-pyridylmethyl)piperazine, see: Martin *et al.* (2009).

Experimental

Crystal data

$C_{16}H_{21}N_4^+ \cdot ClO_4^- \cdot 0.5C_4H_4O_4$	c = 14.3440 (17) Å
$M_r = 426.85$	$\alpha = 88.691 \ (2)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 83.785 \ (2)^{\circ}$
$a = 7.7287 (9) \text{ Å}_{1}$	$\gamma = 66.749 \ (2)^{\circ}$
b = 9.6415 (11) Å	$V = 976.0 (2) \text{ Å}^3$

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.908, T_{\max} = 0.969$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.05	refinement
3593 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
268 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3N\cdots N4^{i}$	0.925 (19)	1.884 (19)	2.8067 (19)	175.0 (17)
$O1 - H1A \cdot \cdot \cdot N1^{ii}$	0.93 (2)	1.68 (2)	2.6081 (19)	178 (2)
C10−H10A···O3 ⁱⁱⁱ	0.99	2.37	3.281 (2)	153 (2)
$C12-H12\cdots O6^{iv}$	0.95	2.49	3.138 (3)	126 (2)
Symmetry codes: (i -x+2, -y+1, -z.) $x - 1, y, z;$	(ii) $x, y + 1, z$	z; (iii) $x - 1,$	y + 1, z; (iv)

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Crystal Maker* (Palmer, 2005); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2492).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Martin, D., Supkowski, R. M. & LaDuca, R. L. (2009). *Dalton Trans.* pp. 514–520.
- Palmer, D. (2005). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.
- Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $0.41 \times 0.21 \times 0.13 \text{ mm}$

14571 measured reflections 3593 independent reflections

3178 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int}=0.031$

supplementary materials

Acta Cryst. (2009). E65, o1817 [doi:10.1107/S1600536809026026]

1,4-Bis(4-pyridylmethyl)piperazin-1-ium perchlorate fumaric acid hemisolvate

G. A. Farnum and R. L. LaDuca

Comment

The title compound (I) was prepared during an attempt to prepare a divalent Cd coordination polymer containing both fumarate and N,N'-di(4-pyridyl- methyl)piperazine (bpmp) ligands. The coordination polymer [Cd(fumarate)(bpmp)(H₂O)₂]_n could only be prepared by using maleic acid, which underwent *in situ cis-trans* isomerization (Martin *et al.*, 2009).

The asymmetric unit of the title compound (Fig. 1) consists of one bpmp molecule protonated at one of its piperazinyl-N atoms, one perchlorate anion, and one-half of a fumaric acid molecule situated across a crystallographic inversion centre. Hydrogen-bonding between the carboxylic acid functional groups of the fumaric acid molecules and pyridyl-N atoms within the Hbpmp⁺ moieties produces dicationic [(Hbpmp)₂(H₂fumarate)]²⁺ trimolecular aggregations (Fig. 2 & Table 1).

The $[(\text{Hbpmp})_2(\text{H}_2\text{fumarate})]^{2^+}$ units construct one-dimensional ribbon motifs (Fig. 3) by means of N—H···N hydrogen-bonding between the protonated piperazinyl-N atoms and pyridyl-N atoms. Individual ribbons aggregate into a 2-D supramolecular layer through C—H···O interactions mediated by the perchlorate anions (Table 1). Neighbouring layers stack into the 3-D crystal structure (Fig. 4) by π - π interactions between pyridyl rings. (*Cg*—*Cg*(-*x* + 1,-*y* + 2,-*z*) with distance = 3.640 (1) Å).

Experimental

Cadmium perchlorate hexahydrate and fumaric acid were obtained commercially. *N*,*N*'-Di(4-pyridylmethyl)piperazine (bp-mp) was prepared *via* a published procedure (Pocic *et al.*, 2005). Cadmium perchlorate hexahydrate (0.0175 g, 0.0562 mmol) and fumaric acid (0.0065 g, 0.056 mmol) were placed in water (1.5 ml) in a glass vial along with 1.0 *M* NaOH (0.2 ml). This solution was heated to 373 K to dissolve the fumaric acid. An aliquot (0.75 ml) of a 1:1 water:ethanol solution was carefully layered on top. Then 0.075 *M* ethanolic solution (1.5 ml) of bpmp (0.11 mmol) was carefully layered on top. Colourless blocks of (I) were deposited after standing for one week at 293 K.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å for sp^2 hybridized C atoms and C—H = 0.99 Å for sp^3 hybridized C atoms, and refined in riding mode with $U_{iso} = 1.2U_{eq}(C)$. The H atoms bound to O and the H atoms bound to the piperazinyl-N were found *via* Fourier difference map, and refined with $U_{iso} = 1.2$ times the $U_{eq}(O, N)$.

Figures

Fig. 1. Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms positions are marked as gray sticks. A complete fumaric acid moiety is shown. Symmetry code: i -x + 1, -y + 1, -z + 1.

Fig. 2. A $[(Hbpmp)_2(H_2fumarate)]^{2+}$ trimolecular aggregration in (I). Hydrogen bonding is shown as dashed lines.

Fig. 3. A hydrogen-bonded ribbon motif consisting of $[(Hbpmp)_2(H_2fumarate)]^{2+}$ trimolecular aggregration. Hydrogen bonding is shown as dashed lines.

Fig. 4. Packing diagram for (I).

Bis[1,4-bis(4-pyridylmethyl)piperazin-1-ium] bis(perchlorate) fumaric acid solvate

Crystal data

$C_{16}H_{21}N_4^+ \cdot ClO_4^- \cdot 0.5C_4H_4O_4$	Z = 2
$M_r = 426.85$	$F_{000} = 448$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.452 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.7287 (9) Å	Cell parameters from 14571 reflections
b = 9.6415 (11) Å	$\theta = 2.3 - 25.4^{\circ}$
c = 14.3440 (17) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 88.691 \ (2)^{\circ}$	T = 173 K
$\beta = 83.785 \ (2)^{\circ}$	Block, colourless
$\gamma = 66.749 \ (2)^{\circ}$	$0.41 \times 0.21 \times 0.13 \text{ mm}$
$V = 976.0 (2) \text{ Å}^3$	

Data collection

3593 independent reflections
3178 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$

<i>T</i> = 173 K	$\theta_{max} = 25.4^{\circ}$
$\omega - \psi$ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.908, \ T_{\max} = 0.969$	$k = -11 \rightarrow 11$
14571 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 0.5777P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3593 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
268 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Supramolecular interactions were calculated using PLATON (Spek, 2009).

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N2	0.14315 (19)	0.60021 (15)	0.29972 (9)	0.0221 (3)
N3	0.12885 (19)	0.80520 (15)	0.14915 (9)	0.0195 (3)
H3N	0.005 (3)	0.828 (2)	0.1385 (13)	0.023*
C7	0.1416 (2)	0.55727 (19)	0.20264 (12)	0.0251 (4)
H7A	0.0094	0.5841	0.1892	0.030*
H7B	0.2108	0.4467	0.1936	0.030*
N1	0.3877 (2)	0.04563 (16)	0.39116 (10)	0.0283 (3)
C2	0.0899 (3)	0.2558 (2)	0.39796 (12)	0.0284 (4)
H2	-0.0442	0.2929	0.4102	0.034*

supplementary materials

C10	0.1253 (2)	0.84885 (18)	0.24896 (11)	0.0226 (3)
H10A	0.0515	0.9588	0.2586	0.027*
H10B	0.2561	0.8254	0.2637	0.027*
C8	0.2342 (2)	0.63786 (18)	0.13586 (12)	0.0241 (4)
H8A	0.3676	0.6088	0.1480	0.029*
H8B	0.2333	0.6081	0.0704	0.029*
C3	0.1772 (2)	0.35304 (18)	0.36903 (11)	0.0234 (4)
N4	0.76043 (19)	0.86552 (17)	0.10634 (10)	0.0261 (3)
C11	0.1980 (2)	0.89600 (18)	0.07906 (12)	0.0224 (3)
H11A	0.1951	0.8615	0.0150	0.027*
H11B	0.1099	1.0034	0.0862	0.027*
C9	0.0361 (2)	0.76287 (18)	0.31339 (12)	0.0238 (4)
H9A	0.0339	0.7917	0.3794	0.029*
H9B	-0.0962	0.7896	0.3002	0.029*
C4	0.3730 (2)	0.29139 (19)	0.34948 (11)	0.0244 (4)
H4	0.4382	0.3534	0.3280	0.029*
C15	0.4238 (2)	0.99776 (19)	0.13418 (12)	0.0249 (4)
H15	0.3188	1.0839	0.1600	0.030*
C16	0.6071 (2)	0.9846 (2)	0.14065 (12)	0.0268 (4)
H16	0.6248	1.0639	0.1709	0.032*
C5	0.4719 (3)	0.13881 (19)	0.36167 (12)	0.0273 (4)
Н5	0.6060	0.0981	0.3485	0.033*
C14	0.3955 (2)	0.88367 (18)	0.08945 (11)	0.0202 (3)
C6	0.0591 (2)	0.51999 (19)	0.36533 (13)	0.0282 (4)
H6A	-0.0668	0.5346	0.3472	0.034*
H6B	0.0398	0.5652	0.4289	0.034*
C1	0.1992 (3)	0.1050 (2)	0.40882 (12)	0.0300 (4)
H1	0.1375	0.0403	0.4298	0.036*
C12	0.7322 (2)	0.7561 (2)	0.06285 (12)	0.0261 (4)
H12	0.8397	0.6706	0.0383	0.031*
01	0.55138 (19)	0.75287 (15)	0.40307 (10)	0.0365 (3)
H1A	0.496 (3)	0.857 (3)	0.3980 (15)	0.044*
C17	0.4406 (2)	0.70070 (19)	0.45469 (12)	0.0261 (4)
Cl1	0.78159 (6)	0.33434 (5)	0.16421 (3)	0.02773 (13)
O5	0.7247 (2)	0.45702 (18)	0.22864 (11)	0.0539 (4)
O6	0.9359 (3)	0.3305 (3)	0.10017 (15)	0.0877 (7)
C18	0.5308 (2)	0.53460 (19)	0.46587 (13)	0.0281 (4)
H18	0.6356	0.4764	0.4228	0.034*
O2	0.28278 (17)	0.77780 (14)	0.49090 (10)	0.0342 (3)
O3	0.8334 (3)	0.19613 (18)	0.21367 (14)	0.0673 (5)
O4	0.6259 (2)	0.34683 (18)	0.11388 (11)	0.0555 (4)
C13	0.5544 (2)	0.76136 (19)	0.05197 (12)	0.0243 (4)
H13	0.5408	0.6823	0.0192	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0246 (7)	0.0196 (7)	0.0218 (7)	-0.0091 (6)	-0.0001 (6)	0.0040 (5)

N3	0.0152 (6)	0.0221 (7)	0.0233 (7)	-0.0091 (6)	-0.0048 (5)	0.0053 (5)
C7	0.0299 (9)	0.0217 (8)	0.0265 (9)	-0.0128 (7)	-0.0051 (7)	0.0032 (7)
N1	0.0347 (8)	0.0221 (7)	0.0273 (8)	-0.0110 (6)	-0.0015 (6)	0.0027 (6)
C2	0.0277 (9)	0.0285 (9)	0.0300 (9)	-0.0131 (7)	0.0002 (7)	0.0046 (7)
C10	0.0253 (8)	0.0197 (8)	0.0240 (8)	-0.0097 (7)	-0.0050 (7)	0.0023 (6)
C8	0.0258 (9)	0.0217 (8)	0.0236 (8)	-0.0083 (7)	-0.0022 (7)	0.0011 (6)
C3	0.0288 (9)	0.0235 (8)	0.0187 (8)	-0.0118 (7)	-0.0010 (7)	0.0033 (6)
N4	0.0213 (7)	0.0348 (8)	0.0265 (7)	-0.0152 (6)	-0.0046 (6)	0.0054 (6)
C11	0.0182 (8)	0.0253 (8)	0.0252 (8)	-0.0097 (7)	-0.0055 (6)	0.0093 (7)
С9	0.0233 (8)	0.0220 (8)	0.0242 (8)	-0.0077 (7)	0.0001 (7)	0.0022 (7)
C4	0.0286 (9)	0.0251 (9)	0.0229 (8)	-0.0147 (7)	-0.0011 (7)	0.0020 (7)
C15	0.0222 (8)	0.0239 (8)	0.0288 (9)	-0.0102 (7)	0.0002 (7)	0.0022 (7)
C16	0.0285 (9)	0.0305 (9)	0.0277 (9)	-0.0185 (8)	-0.0032 (7)	0.0021 (7)
C5	0.0270 (9)	0.0264 (9)	0.0277 (9)	-0.0101 (7)	-0.0019 (7)	0.0014 (7)
C14	0.0184 (8)	0.0242 (8)	0.0201 (8)	-0.0105 (7)	-0.0044 (6)	0.0084 (6)
C6	0.0271 (9)	0.0245 (9)	0.0298 (9)	-0.0091 (7)	0.0051 (7)	0.0054 (7)
C1	0.0371 (10)	0.0262 (9)	0.0317 (9)	-0.0183 (8)	-0.0017 (8)	0.0048 (7)
C12	0.0195 (8)	0.0299 (9)	0.0273 (9)	-0.0088 (7)	-0.0007 (7)	0.0019 (7)
01	0.0351 (7)	0.0220 (7)	0.0471 (8)	-0.0093 (6)	0.0085 (6)	0.0065 (6)
C17	0.0285 (9)	0.0253 (9)	0.0269 (9)	-0.0127 (7)	-0.0054 (7)	0.0042 (7)
Cl1	0.0276 (2)	0.0264 (2)	0.0286 (2)	-0.01057 (17)	0.00035 (17)	-0.00359 (17)
05	0.0618 (10)	0.0491 (9)	0.0518 (9)	-0.0238 (8)	0.0021 (8)	-0.0249 (7)
O6	0.0777 (14)	0.1239 (18)	0.0735 (13)	-0.0640 (14)	0.0431 (11)	-0.0279 (12)
C18	0.0270 (9)	0.0237 (9)	0.0335 (9)	-0.0101 (7)	-0.0030 (7)	0.0012 (7)
02	0.0263 (7)	0.0255 (7)	0.0473 (8)	-0.0082 (5)	0.0007 (6)	0.0072 (6)
03	0.0694 (12)	0.0396 (9)	0.0948 (14)	-0.0176 (8)	-0.0373 (10)	0.0257 (9)
O4	0.0474 (9)	0.0555 (10)	0.0560 (10)	-0.0064 (8)	-0.0259 (8)	-0.0122 (8)
C13	0.0228 (8)	0.0276 (9)	0.0252 (9)	-0.0127 (7)	-0.0032 (7)	0.0011 (7)

Geometric parameters (Å, °)

N2—C6	1.462 (2)	С9—Н9А	0.9900
N2—C9	1.462 (2)	С9—Н9В	0.9900
N2—C7	1.464 (2)	C4—C5	1.382 (2)
N3—C10	1.496 (2)	C4—H4	0.9500
N3—C8	1.499 (2)	C15—C16	1.385 (2)
N3—C11	1.5082 (19)	C15—C14	1.386 (2)
N3—H3N	0.925 (19)	C15—H15	0.9500
С7—С8	1.513 (2)	С16—Н16	0.9500
С7—Н7А	0.9900	С5—Н5	0.9500
С7—Н7В	0.9900	C14—C13	1.389 (2)
N1—C1	1.336 (2)	C6—H6A	0.9900
N1—C5	1.340 (2)	С6—Н6В	0.9900
C2—C1	1.379 (2)	C1—H1	0.9500
С2—С3	1.388 (2)	C12—C13	1.381 (2)
С2—Н2	0.9500	C12—H12	0.9500
C10—C9	1.515 (2)	O1—C17	1.312 (2)
C10—H10A	0.9900	O1—H1A	0.93 (2)
C10—H10B	0.9900	C17—O2	1.214 (2)

supplementary materials

C8—H8A	0.9900	C17—C18	1.486 (2)
C8—H8B	0.9900	Cl1—O6	1.4129 (17)
C3—C4	1.388 (2)	Cl1—O5	1.4135 (14)
C3—C6	1.508 (2)	Cl1—O3	1.4271 (16)
N4—C16	1.338 (2)	Cl1—O4	1.4329 (15)
N4—C12	1.339 (2)	C18—C18 ⁱ	1.323 (4)
C11—C14	1.507 (2)	C18—H18	0.9500
C11—H11A	0.9900	С13—Н13	0.9500
C11—H11B	0.9900		
C6—N2—C9	109.37 (13)	С10—С9—Н9В	109.6
C6—N2—C7	110.81 (13)	Н9А—С9—Н9В	108.1
C9—N2—C7	109.43 (13)	C5—C4—C3	119.24 (15)
C10—N3—C8	109.52 (12)	С5—С4—Н4	120.4
C10—N3—C11	113.55 (12)	С3—С4—Н4	120.4
C8—N3—C11	113.77 (13)	C16—C15—C14	119.15 (16)
C10—N3—H3N	107.0 (11)	C16—C15—H15	120.4
C8—N3—H3N	107.2 (11)	C14—C15—H15	120.4
C11—N3—H3N	105.2 (11)	N4—C16—C15	123.15 (16)
N2—C7—C8	110.08 (13)	N4—C16—H16	118.4
N2—C7—H7A	109.6	С15—С16—Н16	118.4
С8—С7—Н7А	109.6	N1—C5—C4	123.06 (16)
N2—C7—H7B	109.6	N1—C5—H5	118.5
С8—С7—Н7В	109.6	С4—С5—Н5	118.5
H7A—C7—H7B	108.2	C15—C14—C13	117.85 (15)
C1—N1—C5	117.52 (15)	C15-C14-C11	120.58 (15)
C1—C2—C3	119.45 (17)	C13—C14—C11	121.53 (15)
С1—С2—Н2	120.3	N2—C6—C3	113.82 (14)
С3—С2—Н2	120.3	N2—C6—H6A	108.8
N3—C10—C9	109.59 (13)	С3—С6—Н6А	108.8
N3—C10—H10A	109.8	N2—C6—H6B	108.8
C9—C10—H10A	109.8	С3—С6—Н6В	108.8
N3—C10—H10B	109.8	H6A—C6—H6B	107.7
C9—C10—H10B	109.8	N1-C1-C2	123.08 (16)
H10A-C10-H10B	108.2	N1-C1-H1	118.5
N3—C8—C7	109.62 (13)	C2—C1—H1	118.5
N3—C8—H8A	109.7	N4—C12—C13	123.18 (16)
С7—С8—Н8А	109.7	N4—C12—H12	118.4
N3—C8—H8B	109.7	C13—C12—H12	118.4
С7—С8—Н8В	109.7	C17—O1—H1A	112.1 (14)
H8A—C8—H8B	108.2	O2—C17—O1	124.70 (16)
C4—C3—C2	117.62 (16)	O2—C17—C18	122.91 (16)
C4—C3—C6	122.93 (15)	O1—C17—C18	112.39 (15)
C2—C3—C6	119.36 (15)	O6—Cl1—O5	111.03 (11)
C16—N4—C12	117.42 (14)	O6—Cl1—O3	109.67 (14)
C14—C11—N3	113.66 (12)	O5—Cl1—O3	109.73 (11)
C14—C11—H11A	108.8	O6—Cl1—O4	109.55 (12)
N3—C11—H11A	108.8	O5—Cl1—O4	109.66 (10)
C14—C11—H11B	108.8	O3—C11—O4	107.13 (10)

N3—C11—H11B	108.8	C18 ⁱ —C18—C17	121.9 (2)		
H11A—C11—H11B	107.7	C18 ⁱ —C18—H18	119.1		
N2—C9—C10	110.42 (13)	C17—C18—H18	119.1		
N2—C9—H9A	109.6	C12—C13—C14	119.23 (15)		
С10—С9—Н9А	109.6	С12—С13—Н13	120.4		
N2—C9—H9B	109.6	C14—C13—H13	120.4		
C6—N2—C7—C8	-178.35 (13)	C1—N1—C5—C4	0.3 (3)		
C9—N2—C7—C8	60.97 (17)	C3—C4—C5—N1	0.5 (3)		
C8—N3—C10—C9	-57.20 (16)	C16—C15—C14—C13	-0.8 (2)		
C11—N3—C10—C9	174.41 (12)	C16-C15-C14-C11	-178.52 (15)		
C10—N3—C8—C7	57.58 (16)	N3-C11-C14-C15	-101.07 (17)		
C11—N3—C8—C7	-174.15 (12)	N3-C11-C14-C13	81.28 (19)		
N2—C7—C8—N3	-59.62 (17)	C9—N2—C6—C3	-170.06 (14)		
C1—C2—C3—C4	1.9 (3)	C7—N2—C6—C3	69.22 (18)		
C1—C2—C3—C6	-174.69 (16)	C4—C3—C6—N2	28.0 (2)		
C10—N3—C11—C14	59.12 (18)	C2—C3—C6—N2	-155.56 (16)		
C8—N3—C11—C14	-67.06 (18)	C5—N1—C1—C2	0.1 (3)		
C6—N2—C9—C10	177.63 (14)	C3—C2—C1—N1	-1.2 (3)		
C7—N2—C9—C10	-60.81 (17)	C16—N4—C12—C13	0.2 (2)		
N3—C10—C9—N2	59.18 (17)	O2-C17-C18-C18 ⁱ	-18.1 (3)		
C2—C3—C4—C5	-1.6 (2)	O1—C17—C18—C18 ⁱ	160.9 (2)		
C6—C3—C4—C5	174.91 (16)	N4-C12-C13-C14	-1.6 (3)		
C12—N4—C16—C15	0.9 (2)	C15-C14-C13-C12	1.8 (2)		
C14—C15—C16—N4	-0.6 (3)	C11—C14—C13—C12	179.51 (15)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3N…N4 ⁱⁱ	0.925 (19)	1.884 (19)	2.8067 (19)	175.0 (17)
O1—H1A…N1 ⁱⁱⁱ	0.93 (2)	1.68 (2)	2.6081 (19)	178 (2)
C10—H10A···O3 ^{iv}	0.99	2.37	3.281 (2)	153 (2)
C12—H12···O6 ^v	0.95	2.49	3.138 (3)	126 (2)

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*-1, *y*+1, *z*; (v) -*x*+2, -*y*+1, -*z*.

Fig. 2

Fig. 4